SET - A						
Eng. Medium 9 th GSEB Batch :		MAH SU Chapter #	ESH TUTORIALS JBJECT : Maths Group - 1 1, 2, 3, 4, 5, 6, 7, 12, 15 Question Paper	Test - Date: Time: Marks :		
Q:1 1.	MCQs : is a	[1 Mark] a rationalizing facto	CHAPTER : 1 or of 3 + $\sqrt{7}$		01	
	(a) \(3 - 7	(b) $\sqrt{3} - \sqrt{3}$	$\sqrt{7}$ (c) $\sqrt{7} + \sqrt{3}$	(d) $3 - \sqrt{7}$		
Q:2	Solve the f	following sums : [2	Marks Each]		06	
2.	Find five r	rational numbers 1	between $\frac{3}{2}$ and $\frac{4}{2}$.			
3.	Write the	e following in dec	cimal form and say wha	t kind of decima	.1	
	expansion	each has : $4\frac{1}{2}$				
4	Show how	$\sqrt{5}$ can be represent	ted on the number line			
·.			<i>p</i>			
5.	Express the $\overline{2}$	e following in the forr	$\mathbf{m} - \mathbf{q}$, where <i>p</i> and <i>q</i> are integed	ers and $\boldsymbol{q} \neq \boldsymbol{0}$		
	0.001					
Q:3 6.	Solve the f	following sums : [3	Marks]		03	
	(i) $\left(\sqrt{5} + \sqrt{2}\right)^2$ (ii) $\left(\sqrt{5} - \sqrt{2}\right)\left(\sqrt{5} + \sqrt{2}\right)$					
	Rationalise the denominators of the following : 1					
	(iii) $\sqrt{7}-2$	2				
Q:1	Multiple C	boice Questions :	CHAPTER : 2 [1 Mark Each]		02	
1.	(a) -1.638	(b) -16.38	(c) 1.638	(d) 16.38		
2.	If $a = b = c$ (a) a^3	then $a^3 + b^3 + c^3 - 3a^3$ (b) $2a^3$	$abc = \(c) 3a^3$	(d) 0		
Q:2 3. 4.	Solve the following sums : [2 Marks Each] Verify whether the following are zeroes of the polynomial, indicated against them. p(x) = (x + 1) (x - 2), x = -1, 2 Find the value of k, if $x - 1$ is a factor of $p(x)$ in each of the following cases : $p(x) = kx^2 - 3x + k$					
5. 6.	Factorise : : Write the fo	$x^3 + 13x^2 + 32x + 20$ ollowing cubes in exp	anded form : $(2a - 3b)^3$			
Q:1 1. 2.	Solve the f The co-ordination of If the x-co-ordination of the	following sums : [1 nate of point which li Y-axis is : ordinate of a point is	<u>CHAPTER : 3</u> Marks Each] ies on Y-axis at a distance of 5 negative, it can lie in which c	5 units in the negativ nuadrant ?	02	
<u></u> .		or annual of a point is		1		

Q:2	Solve the following sums : [2 Mark]	02				
2.	Find the value of k if $x = 2$, $y = 1$ is a solution of the equation $2x + 3y = k$.					
Q : 3 3.	Solve the following sums : [3 Mark]OThe taxi fare in a city is as follows : For the first kilometre, the fare is Rs. 8 and for the subsequent distance it is Rs. 5 per km. Taking the distance covered as x km and total fare as Rs. y, write a linear equation for this information, and draw its graph.O					
Q:4 4.	Solve the following sums : [4 Mark] Yamini and Fatima, two students of Class IX of a school, together contributed Rs. 100 towards the Prime Minister's Relief Fund to help the earthquake victims. Write a linear equation which this data satisfies. (You may take their contributions as Rs. <i>x</i> and Rs. <i>y</i>). Draw the graph of the same.	04				
0 : 1	<u>CHAPTER : 5</u> Solve the following sums : [1 Marks Each]	02				
1. 2.	John is of the same age as Mohan. Ram is also of the same age as Mohan. State the Euclid's axiom that illustrates the relative ages of John and Ram. How would you rewrite Euclid's fifth postulate so that it would be easier to understand?					
Q : 2 3.	Solve the following sums : [2 Marks Each] If a point C lies between two points A and B such that AC = BC, then prove that	08				
	AC = $\frac{1}{2}$ AB. Explain by drawing the figure.					
4. 5.	If a point C lies between two points A and B such that AC = BC, point C is called a mid-point of line segment AB. Prove that every line segment has one and only one mid-point. In Figure, if AC = BD, then prove that AB = CD.					
	D					
	BC					
	A					
6.	It is known that $x + y = 10$ and that $x = z$. Show that $z + y = 10$?					
Q:1 1.	CHAPTER : 6Multiple Choice Questions : [1 Mark]0If two angle forming a linear pair have measures (6y +30) and 4y then y =0					
	(a) 30 (b) 15 (c) 60 (d) 90					
Q:2 2.	Solve the following sums : [2 Mark] In figure, if AB CD, $\angle APQ = 50^{\circ}$ and $\angle PRD = 127^{\circ}$, find x and y.	02				

Q:3	Solve the following sums : [3 Mark] $P \longrightarrow Q$	03
3.	In figure, If $PQ \perp PS$, $PQ \parallel SR$,	
	\angle SQR = 28° and \angle QRT = 65°,	
	then find the values of <i>x</i> and <i>y</i> .	
	⁹ / 65°	
	$s \xrightarrow{R} T$	
0.4	Selve the fellowing even a [4 Merth]	~
Q:4	Solve the following sums : [4 Mark] X In figure (X = 60° (XYZ = 54° If V) and Z) are the bisectory A	04
т.	of XVZ and XZV respectively of XVZ find XOZY and XOZ	
	o	
	CHAPTER : 7 54°	
Q:1	Multiplce Choice Questions : [1 Mark] Y Z	01
1.	criterion does not imply congruence.	
	(a) AAS (b) SSA (c) ASA (d) SAS	
0:2	Solve the following sums : [2 Mark]	02
2.	In quadrilateral ACBD, AC = AD and AB bisects	
	$\angle A$ (see figure). Show that $\triangle ABC \cong \triangle ABD$.	
	What can you say about BC and BD?	
Q : 3	Solve the following sums : [3 Mark]	03
3.	BE and CF are two equal altitudes of a triangle ABC. D	
	Using RHS congruence rule, prove that the triangle ABC is isosceles. 6_{75}	
0 · 4	Solve the following sums : [4 Mark]	04
4.	AB and CD are respectively the smallest and longest sides of	Ŭ
	a quadrilateral ABCD (see figure). Show that $\angle A > \angle C$ and $A > A > A$	
	$\angle B > \angle D$.	
	\mathbf{B} $\begin{pmatrix} 2 \\ 2 \end{pmatrix}^2 = 3 \begin{pmatrix} 4 \\ 2 \end{pmatrix} \mathbf{C}$	
	<u>CHAPTER : 12</u>	
Q:1	Multiplce Choice Questions : [1 Mark]	01
1.	The area of an equilateral triangle with each side measuring 10 cm is cm^2	
	Cm .	
	(a) $\frac{5\sqrt{3}}{2}$ (b) $25\sqrt{3}$ (c) $5\sqrt{3}$ (d) $3\sqrt{5}$	
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
$0 \cdot 2$	Solve the following sums · [2 Marks]	02
2 .	Find the area of a triangle two sides of which are 18cm and 10cm and the perimeter	<u> </u>
	is 42cm.	
	St.	
Q : 3	Solve the following sums : [3 Mark]	03
3.	An umbrella is made by stitching 10 triangular pieces of	
	cloth of two different colours (See figure), each piece	
	measuring 20cm, 50cm, and 50cm. How much cloth	
	of each colour is required for the umbrella ?	
		J

Q : 4 4.	Solve the following sums : [4 Mark](4A field is in the shape of a trapezium whose parallel sides are 25m and 10m. The non-parallel sides are 14m and 13m. Find the area of the field.(4					04	
			<u>CH</u>	<u> APTER : 1</u>	5		
Q:1	MCQs: [2]	l Marks Eac	ch]	the ment		- 10	02
1 .	Probability	oi naving 5	sundays in	the month	r or January	/ 1S	
	(a) $\frac{2}{7}$	(b)	$\frac{3}{7}$	(c)	$\frac{5}{7}$	(d) $\frac{1}{7}$	
2.	The probabi	lity of gettin	ng number	5 on a bala	nced die is .		
	(a) $\frac{1}{3}$	(b)	$\frac{1}{4}$	(c)	$\frac{1}{5}$	(d) $\frac{1}{6}$	
Q : 2 3.	Solve the fo (i) Three co of differe	bllowing sum	ms : [2 Ma ed simultan	rks Each] eously 200	times with t	he following frequencies	04
	Outcome	3 heads	2 heads	1 head	No head		
	Frequency	23	72	77	28		
3.	If the three of heads comin (ii) Eleven	coins are sim ig up. bags of who	ultaneousl eat flour,	y tossed ag each mark	ain, compute ced 5 kg, a	e the probability of 2 ctually contained the	
	following	weights of f	lour (in kg)	: 10 4 0 9 5 0	4 5 07 5 00		
	4.97, 5.05, 5	.08, 5.03, 5.0 bability that	10, 5.06, 5.0	18, 4.98, 5.0	4, 5.07, 5.00	m contains more than 5	
	kg of flour	Dabinity that	any or thes	e bags chos		in contains more than 5	
4.	A teacher an	nalvses the r	performance	e of two sec	tions of stu	dents in a mathematics	
	test of 100 r	narks given i	in the follow	ving table.		aonoo ni a macromacio	
		Marks	Numbe	r of studen	ts		
		0 - 20		7			
		20 - 30		10			
		30 - 40		10			
		40 - 50		20			
		50 - 60		20			
		60 - 70		15			
	70	and above		8			
		Total		90			
	(i) Find th	e probability.	that a stud	lent obtaine	ed less than	20% in the mathematics	
	test.						
	(ii) Find th	e probability	that a stuc	lent obtaine	ed marks 60	or above.	
0 · 3	Solve the f	allowing sur	ms · [4 Ma	rkel			04
5.	An organisa	tion selected	2400 famil	lies at rando	om and surv	eved them to determine	07
0.	a relationsh	ip between i	ncome leve	and the r	number of ve	chicles in a family. The	
	information	gathered is l	listed in the	e table below	w.	······································	
							J

Monthly income	Vehicles per family				
Monthly income (in Rs) Less than 7000 7000 – 10000 10000 – 13000 13000 – 16000 16000 or more	0	1	2	Above 2	
Less than 7000	10	160	25	0	
7000 – 10000	0	305	27	2	
10000 - 13000	1	535	29	1	
13000 - 16000	2	469	59	25	
16000 or more	1	579	82	88	

Suppose a family is chosen. Find the probability that the family chosen is

(i) earning Rs 10000 – 13000 per month and owning exactly 2 vehicles.

(ii) earning Rs 16000 or more per month and owning exactly 1 vehicle.

(iii) earning less than Rs. 7000 per month and does not own any vehicle.

(iv) earning Rs. 13000 - 16000 per month and owning more than 2 vehicle.

 $\star \star \star \star$ Best of Luck $\star \star \star \star$

SET - A

MAHESH TUTORIALS

Eng. Medium 9th GSEB Batch : SUBJECT : Maths Group - 1 Chapter # 1, 2, 3, 4, 5, 6, 7, 12, 15 Model Answer Paper **Test -**Date:

Time: 3 Hrs

Marks : 100

	<u>CHAPTER : 1</u>				
Q:1 1.	MCQs: [1 Mark] (d) $3 - \sqrt{7}$	01			
	$(\alpha) \mathbf{J} = \sqrt{1}$				
Q:2	Solve the following sums : [2 Marks Each] 3 4	06			
2.	Since we require 5 rational numbers between $\frac{1}{5}$ and $\frac{1}{5}$, So we write	1∕2			
	$\frac{3}{5} = \frac{3}{5} \times \frac{6}{6} = \frac{18}{30} \text{ and } \frac{4}{5} = \frac{4}{5} \times \frac{6}{6} = \frac{24}{30}$ Also 18 < 19 < 20 < 21 < 22 < 23 < 24	⅓			
	$\frac{18}{30} < \frac{19}{30} < \frac{20}{30} < \frac{21}{30} < \frac{22}{30} < \frac{23}{30} < \frac{24}{30}$	1⁄2			
	Hence 5 rational number between $\frac{3}{5}$ and $\frac{4}{5}$ are $\frac{19}{30}$, $\frac{20}{30}$, $\frac{21}{30}$, $\frac{22}{30}$ and $\frac{23}{30}$.	1∕2			
3.	$4\frac{1}{8} = \frac{33}{8}$				
	$= \frac{33 \times 125}{2}$	1/ 2			
	8 × 125	1∕2			
	$= \frac{4125}{1000}$	1∕2			
	= 4.125, terminating decimal	1∕2			
4.	$(\sqrt{5})^2 = 2^2 + 1^2$ We construct right angled AOAB.	1/2			
	right angled at A such that	1/			
	OA = 2 and AB = 1 unit.				
	$\begin{array}{c c} OB = \sqrt{OA^2 + AB^2} = \sqrt{2^2 + 1^2} = \sqrt{5} & & & & & & & & & & & & & & & & & & &$				
	Now, cut off a length OC = OB = $\sqrt{5}$ on the number line. $\overrightarrow{A} \sqrt[3]{5}$				
	\therefore Point C represents the irrational number $\sqrt{5}$.				
5.	Let $x = 0.\overline{001} = 0.001001001$ (1)				
	Multiplying both sides by 1000, we get	1/2			
	Subtracting (1) from (2), we get (2)	1/5			
	1000x - x = (1.001001001) - (0.001001001)				
	999x = 1				
	$\therefore \qquad x = \frac{1}{999}$	1⁄2			

	$r^2 \pm 10r \pm 20$				
	$\frac{x + 12x + 20}{2}$				
	$x + 1)x^3 + 13x^2 + 32x + 20$	16			
	$x^3 + x^2$	12			
	$12x^2 + 32x$				
	$12x^2 + 12x$	1∕2			
	20x + 20				
	20x + 20 20x + 20	14			
		72			
	0	1			
	$\therefore \text{ Second factor} = x^2 + 12x + 20$	1⁄2			
	$= x^2 + 10x + 2x + 5$	1∕2			
	= x (x + 10) + 2 (x + 10)				
	= (x + 10) (x + 2) : $p(x) = (x + 1) (x + 10) (x + 2)$				
	p(x) = (x + 1)(x + 10)(x + 2)				
	$x^{3} + 13x^{2} + 32x + 20 = (x + 1) (x + 10) (x + 2)$				
6.	$(2a-3b)^3 = (2a)^3 - 3(2a)(3b)(2a-3b) - (3b)^3[\because (a-b)^3 = (a)^3 - 3ab(a-b) - b^3]$	1∕2			
	$=8a^3 - 18ab(2a - 3b) - 27b^3$	1∕2			
	$= 8a^3 - 36a^2b + 54ab^2 - 27b^3$	1			
	CHAPTER : 3				
Q:1	Solve the following sums : [1 Marks Each]	02			
1.	Since the point lies at a distance of 5 units in the negative direction of Y-axis so, $1/2$				
	y-co-ordinate of the point is -5 and its x-co-ordinate is 0.	12			
	m Co-ordinate of required point is $(0, -5)$.	1⁄2			
2.	II or III quadrant.	1			
		~~			
Q:3	Solve the following sums : [4 Marks Each]	08			
з.	(i) The coordinates of P are (5, 2)	1⁄2			
	(i) The coordinates of C are $(5, -5)$	1⁄2			
	(iii) The coordinates $(-3, -5)$ are identified by the point E.	1∕2			
	(iv) The coordinates $(-2, -4)$ are identified by the point G.	1∕2			
	(v) The abscissa of the point D is 6.	1⁄2			
	(vi) The ordinate of the point H is -3 .	¹ /2			
	(vii) The coordinates of the point L are (0, 5).	⁺ ∕2 1∠			
	(viii) The coordinates of the point M are (-3, 0).	72			
4.	(1) In the point $(-2, 4)$, abscissa is negative and ordinate is positive. So, it lies in the				
	(ii) In the point $(3, -1)$ abscissa is positive and ordinate is perative. So, it lies in the	1∕2			
	fourth quadrant.				
	(iii) The point $(-1, 0)$ lies on the negative x - axis.				
	(iv) In the point (1, 2) abscissa and ordinate are positive, so it lies in the first	14			
	quadrant.	72			
	(v) In the point $(-3, -5)$ abscissa and ordinate are negative. Therefore, it lies in the				
	third quadrant.	1∕2			
	Let us locate these points on the cartesian plane. Plot the points $(-2, 4)$, $(3, -1)$				
1					

AB + BC = BC + CD1∕2 D \therefore AB + BC – BC BC + CD - BC= 1∕2 AB = CD. B ÷. C 6. [Given] x = z...(i) 1∕2 ...(ii) $\mathbf{v} = \mathbf{v}$ If equals are added to equals, the wholes are equal. 1∕2 [From (i) and (ii)] $\mathbf{x} + \mathbf{y} = \mathbf{z} + \mathbf{y}$...(iii) 1∕2 But x + y = 10[Given] [Things which are equal to the same thing are equal to one another] 1/2 10 = z + y**CHAPTER: 6 Q**:1 Multiple Choice Questions : [1 Mark] 01 1 1. (b) 15 B_→ Q: 2 Solve the following sums : [2 Mark] 02 AB \parallel CD and transversal PQ intersects them 50 2. at P and Q respectively. 1∕2 127° $\therefore \angle PQR = \angle APQ$ [Alternate angels] x Ď $\therefore x = 50$ 0 R 1∕2 AB || CD and transversal PR intersects them at P and R respectively. •• $\therefore \angle APR = \angle PRD$ [Alternate angles] $\therefore \angle APQ + \angle QPR = 127^{\circ}$ [∵∠PRD = 127°] 1∕2 $\therefore 50 + y = 127$ $[:: \angle APQ = 50^{\circ}]$ $\therefore y = 127 - 50 = 77$ Hence x = 50 and y = 77. 1∕2 Solve the following sums : [3 Mark] Q:3 03 PQ || SR and QR is a transversal line. 3. $\angle PQR = \angle QRT$ (Alternate interior angles) 1∕2 x + 28 = 65P Ο 1∕2 x = 65 - 28x x = 3728 Using angle sum property for \triangle SPQ, we obtain 1∕2 \angle SPQ + x + y = 180 1∕2 90 + 37 + y = 180**65°** y = 180 - 1271∕2 S u = 53R Т 1∕2 \therefore *x* = 37 and *y* = 53 Solve the following sums : [4 Mark] 04 Q:4 4. Consider ΔXYZ , $\angle YXZ + \angle XYZ + \angle XZY = 180^{\circ}$ [Angle sum property of a triangle] 1∕2 $\therefore 62^{\circ} + 54^{\circ} + \angle XZY = 180^{\circ}$ $[:: \angle YXZ = 62^\circ, \angle XYZ = 54^\circ]$ $\therefore \angle XZY = 180^{\circ} - 62^{\circ} - 54^{\circ} = 64^{\circ}$ 1⁄2 Since YO and ZO are bisectors of \angle XYZ and \angle XZY. Therefore $\angle OYZ = \frac{1}{2} \times \angle XYZ = \frac{1}{2} \times 54^\circ = 27^\circ$ 1∕2

Again, in \triangle ABD, we have AD > AB (AB is the longest side) 1∕2 ∠1 > ∠6 ... (iii) In \triangle BCD, we have CD > BC (CD is the longest side) 1∕2 ∠2 > ∠5 ... (iv) Adding (3) and (4), we get 1∕2 $\angle 1 + \angle 2 > \angle 6 + \angle 5$ ∠B > ∠D 1∕2 Thus, $\angle A > \angle C$ and $\angle B > \angle D$ **CHAPTER: 12** Q: 1 Multiplce Choice Questions : [1 Mark] 01 1. (b) $25\sqrt{3}$ **Q** : 2 Solve the following sums : [2 Marks] 02 Let a, b and c be the sides of a triangle such that 2. a = 18 cm, b = 10 cm and a + b + c = 42 cm. \therefore c = 42 - a - b \therefore c = (42 - 18 - 10)cm = 14cm $s = \frac{1}{2}(a+b+c) = \frac{1}{2} \times 42$ cm = 21cm. 1⁄2 Now, s - a = 21 - 183cm s - b = 21 - 10= 11cm 1∕2 s - c = 21 - 14= 7cm and $\sqrt{s(s-a)(s-b)(s-c)}$ \therefore Area of the triangle = = $\sqrt{21 \times 3 \times 11 \times 7}$ 1⁄2 $= \sqrt{3 \times 7 \times 3 \times 11 \times 7}$ $= \sqrt{3 \times 3} \times \underline{7 \times 7} \times 11$ $= 3 \times 7\sqrt{11}$ 1∕2 $= 21\sqrt{11} \text{ cm}^2$ Q:3 Solve the following sums : [3 Mark] 03 In one triangular piece, let a = 20cm, b = 50cm and c = 50cm. 3. $s = \frac{1}{2}(a+b+c) = \frac{1}{2}(20+50+50)$ cm Now, ⅓ $= \frac{1}{2} \times 120$ cm = 60cm 1∕2 s - a = 60 - 20= 40cm Now, s - b = 60 - 50= 10cm 1∕2 = 10cm s - c = 60 - 50Area of the triangle = $\sqrt{s(s-a)(s-b)(s-c)}$ *.*.. ⅓ $= \sqrt{60 \times 40 \times 10 \times 10}$ $= 200 \sqrt{6} \text{ cm}^2$ ⅓ Area of 5 red triangles = $1000\sqrt{6}$ cm² *.*.. 1∕2 area of 5 green triangles = $1000\sqrt{6}$ cm² and,

Q:4	Solve the following sums : [4 Mark]					
4.	Let ABCD be a field in the shape of a trapezium. Parallel sides $AB = 10m$ and $CD = 25m$					
	Non - parallel sides, $AD = 13 \text{ m}$ and $BC = 14 \text{m}$					
	Draw BM \perp DC, BE AD.					
	∴ □ABED is a parallelogram					
	$\therefore BE = AD = 13m$					
	$\therefore EC = 25 - 10 = 15m$	1∕2				
	Now, in $\triangle BEC$,					
	Semi perimeter : $s = \frac{13 + 14 + 15}{2}$					
	$-\frac{42}{2}$	1⁄2				
	-2					
	= 21m Using Heron's Formula,					
	Area of $\triangle BEC = \sqrt{21(21-13)(21-14)(21-15)}$					
	$= \sqrt{21 \times 8 \times 7 \times 6}$					
		1 ⁄2				
	$= 84m^2$					
	1					
	Also, area of $\triangle BEC = \frac{1}{2} \times b \times h$					
	$\therefore \qquad 84 = \frac{1}{2} \times EC \times BM$					
		1 14				
	$84 = \frac{1}{2} \times 15 \times BM \dots [: EC = DC - DE = (25 - 10)m = 15m$.] 7 2				
	$\frac{84 \times 2}{2}$					
	15					
	$\therefore \qquad BM = 11.2m$ Now.					
	1	¹ ⁄2				
	area of trapezium ABCD = $\frac{1}{2} \times (AB + CD) \times BM$					
	1					
	$= \frac{1}{2} \times (10 + 25) \times 11.2$	1∕2				
	1					
	$= \frac{1}{2} \times 35 \times 11.2$	1⁄2				
	$= 196m^2$					
	CHAPTER : 15					
Q:1	MCQs : [1 Marks Each]	02				
1.	(b) $\frac{3}{7}$					
2	(d) $\frac{1}{2}$					
4.	^(u) 6					
\						

